
38th Marktoberdorf Summer School on
Logical Methods for Safety and Security of Software Systems

TU Berlin // Software and Embedded Systems Engineering Group

TOBIAS PFEFFER
Technische Universität Berlin

Software and Embedded Systems Engineering
tobias.pfeffer@tu-berlin.de

Technische Universität Berlin
Fakultät IV, Fachgebiet SESE
Sekretariat TEL 12-4
Ernst-Reuter-Platz 7, 10587 Berlin

Summer School
Marktoberdorf 2017
Logical Methods for Safety and
Security of Software Systems

Towards Verified Security Policies for Binaries

 Example
 Abstract

Approaches for the automatic assessment of security properties on source code level
cannot trivially be applied to binaries. This is due to the lacking high-level semantics of
low-level object code, and the fundamental problem that interprocedural control-flow
recovery from a binary is difficult. We present a novel approach to statically extract
abstract models of the potential behavior of a given binary and verify security policies
on these models using model checking. The key ideas of our approach are twofold.
First, we define a restricted control transition instruction set (RCTIS), which restricts
the number of possible targets for each branch to a finite number of given targets. With
that, we can, for all RCTIS compliant binaries, efficiently compute a safe
overapproximation of the interprocedural control flow. Second, we propose a concept
for the expression of generalized security policies by reasoning over the context under
which low-level API calls are executed with temporal logics. We demonstrate the
applicability of our approach by showing how confidentiality can be verified for a
sample binary.

Restricted Control Transition Instruction set

Starting from object code, the reconstruction of the ICFG is by itself an open computer
security issue. As control hijacking attacks show, the control-flow of binaries is often
vulnerable to arbitrary control redirection. Binaries vulnerable to such attacks could
potentially exhibit any possible behavior. We propose the concept of a restricted
control transition instruction set, as a restriction of the control transition instructions.
The modifications are based on recent findings, most notably control-flow integrity.
If a binary complies with RCTIS, it is possible to efficiently compute a safe
overapproximation of its ICFG based on the information stored in the target table TT.

Generalized Security Policies

As a consequence of the abstract nature of security policies, the concrete ICFG model,
is not a suitable representation of the potential behavior for model checking. To
achieve a universally applicable description of security policies, we define an abstract
behavior model MP, which contains only the information necessary to prove P. We
propose to retain information about the context and dependencies of low-level APIs,
such as system calls. The functionality offered by them is mostly standardized, well-
documented and openly accessible. Furthermore, the functionality these interfaces
offer are not defined by the binary itself, thus cannot be altered by the authors.

As an example, confidentiality holds for a binary S, if, for all paths where a read system
call may be followed by a write system call, and additionally a data dependence
between the contents of the buffer written and the contents of the buffer read exists,
the classification level of the target file descriptor is equal or higher than the
classification level of the source file descriptor. This can be expressed with CTPL logic.

Security Verification on Binaries

The goal of our work is to develop a method for the assessment of the security of a
given binary with respect to a set of different security policies. It takes as input a given
binary S and a security policy P and checks whether the potential behavior MS, models
the policy in question. The behavior model is created through reconstruction of the
interprocedural control-flow graph. While this does contain sufficient information,
performing verification on it is ill-advised. Instead, an abstract, policy-specific model
MP should be created first. We reason that retaining information about the use of low-
level APIs, such as system calls, is sufficient to express generalized security policies.

Verification

To automate this verification process, we intend to use a model checker. Using a formal
encoding of the abstract behavior model MP, and the security policy as a property in
temporal logic, security verification can be rephrased as a model checking problem.

RCTIS compliant binary

ICFG Model

Optimized Model

Control Flow Recovery

Confidentiality Policy

This binary may:
- copy information from ./file to ./copy
- leak information from a ./file to stdout

Model Checker

