Technische
Universitat
Berlin

TU Berlin // Software and Embedded Systems Engineering Group

38" Marktoberdorf Summer School on
Logical Methods for Safety and Security of Software Systems

+SESE

Towards Verified Security Policies for Binaries

Example
Abstract
1 | const char« infile = "./file"; 28 ffypedef;aizef; (» fptr)(char« bUf}', size_t count);
. . . & o =" i 29 tr s = {writ t,printout };
Approaches for the automatic assessment of security properties on source code level | 2 | <" chars wuthile = " sopry w | o e
cannot trivially be applied to binaries. This is due to the lacking high-level semantics of | 4 |ssize t readin(chars buf, size t count) { 2 void dilspatcdmli)n: and, chare buf, size_t count) {
low-level object code, and the fundamental problem that interprocedural control-flow | s int fd; o cmdslamdl(buf, count);
recovery from a binary is difficult. We present a novel approach to statically extract | ¢ ssize_t result; _ 34|}
abstract models of the potential behavior of a given binary and verify security policies | ’ -open(infile , ORDONLY, 0, fd); 35|
. N) 8 _read(fd, buf, count, result); 36 | void _start() {
on these models using model checking. The key ideas of our approach are twofold. | , ~slese (£45: s char buf[138];
First, we define a restricted control transition instruction set (RCTIS), which restricts |10 return result; 38 char emd = 0;
the number of possible targets for each branch to a finite number of given targets. With | 11 bt Sl e
. 12 40 count = readin(buf, 128);
that, we can, for all RCTIS compliant binaries, efficiently compute a safe |*| = srintout(chars buf, size_t count) | u _feadi(D), Acmd, 1, Fesult):
overapproximation of the interprocedural control flow. Second, we propose a concept |, Satie. 1 Fesile ’ - 42 dispatch(cmd & 1, buf, count);
for the expression of generalized security policies by reasoning over the context under | s _write (1, buf, count, result); -) -EREO):
which low-level API calls are executed with temporal logics. We demonstrate the |1 return result;
applicability of our approach by showing how confidentiality can be verified for a i;
Sample blnarv' 19 | ssize_t writeout(char+« buf, size_t count) {
20 int fd;
21 ssize_t result;
Security Verification on Binaries 22 _open(outfile , O_WRONLY|O_CREAT, S_IRWXU, fd);
23 _write(fd, buf, count, result);
A Policy 24 “close (fd);
binary J 25 return result;
s 26
Control-Flow . 3 Formal Model . .
Recovery MGETE | Abstraction [M Encoding Chzclfﬂ Ms EP RCTIS compliant binary
; J
RCTIS P ~"
P o compliance : Control Flow Recovery
oot oA osowwans W i e
The goal of our work is to develop a method for the assessment of the security of a momorah: s’ oo Sween = deerih gk
given binary with respect to a set of different security policies. It takes as input a given e il ikl W s, v e o o i
binary S and a security policy P and checks whether the potential behavior Ms, models s, o oy wd E }“‘
the policy in question. The behavior model is created through reconstruction of the \ oovwezr: au s
interprocedural control-flow graph. While this does contain sufficient information, o (oxko0e0) resin L
performing verification on it is ill-advised. Instead, an abstract, policy-specific model ot tor C‘;';,drsn e paree e pe——
MP should be created first. We reason that retaining information about the use of low- someons 1o gord e Iy - ol o e e
level APIs, such as system calls, is sufficient to express generalized security policies. oo ey v 2 roows: o awrd (1 8 i
Croguems e e, mon i, T, 3 el
Restricted Control Transition Instruction set : Ll
0x4001al (0x400180) readin+0x21 ;
Starting from object code, the reconstruction of the ICFG is by itself an open computer bsivine it di e Lo R i) Nt s s o)yt
security issue. As control hijacking attacks show, the control-flow of binaries is often porcoiseyih fociliiborcnk Lt SERE T apimPO | | EEmae
vulnerable to arbitrary control redirection. Binaries vulnerable to such attacks could v At sovrix, word e Ly 0101 | | Gucakcores, mev o vir Iry - orior, ot
potentially exhibit any possible behavior. We propose the concept of a restricted oo v e o e (7 - 024 s o b e (- 0w, vx || Domenes s e, mard e 1 o)
control transition instruction set, as a restriction of the control transition instructions. puiatite: el St e ifeemciesean) | | GRS me e ine il
The modifications are based on recent findings, most notably control-flow integrity. : oooiomz: sl somrontt: mlt
If a binary complies with RCTIS, it is possible to efficiently compute a safe P P e . .
overapproximation of its ICFG based on the information stored in the target table TT. ookt v ord g (- 00, 1 RS il VPR (v e s)
Case Transition Type Form Semantics Possible Successors oot paiisnci bl gk i i G Lzﬁmﬁﬁli o ron o e b a1
1 Fall through doeT (w.o)r (L(u).o[T — [e]o]) {T(u)} ' v, o ooz, e
2 Direct Branch brT (u,o) - (T, o) {T} (orwoos crseoico reséineonh | ¢
0x004001cb: mov rax, qword ptr [rbp - 0x20] 0x400262 (0x400210) writeout+0x52
" T.O’ Melleo =10 0x004001cF: pop rbp (|
3 Conditional Branch breT (u,o) L) [e] y {T,T(u)} Se Sitosoesty o mend oty (e
(I'(u),o) .otherwise oxonso0267: ret
4 Indirect Branch bre (w.o) + ([elle. o) \% ocaoeadz (oraoozuo) _start-asaz
0x004002d2: mov qword ptr [rbp - 0x90], rax 0x400299 (0x400270) dispatch+0x29
. ello.o) .leloe TT Ox00do02d9: xor ecx, ecx (|
4* Restricted Branch brTTe (u.o)r (el el . TT Sy L epemeings el Ceooronaads bt rap e | LB
(halt.o) . otherwise e o WE oo
; 0x400316 (0x4002b0) _start+0x66
Generalized Security Policies S e o E=n aT
0x004002f1: mov qword ptr [rbp - Ox98, rax 0x0040031d: syscall
0x004002f8: movsx ecx, byte ptr [rbp - OxBl] —_—
As a consequence of the abstract nature of security policies, the concrete ICFG model, oxcbste. sew rve, qword pie [rbg - txt : ICFG Model
is not a suitable representation of the potential behavior for model checking. To o 13 15 o]
achieve a universally applicable description of security policies, we define an abstract Coskeost,_ Gl ousseo sl Ve
behavior model M?, which contains only the information necessary to prove P. We
propose to retain information about the context and dependencies of low-level APIs,
such as system calls. The functionality offered by them is mostly standardized, well- 1 (fdi = open("./file")
documented and openly accessible. Furthermore, the functionality these interfaces
offer are not defined by the binary itself, thus cannot be altered by the authors.
As an example, confidentiality holds for a binary S, if, for all paths where a read system 2 (read(fdr, D (By)) Confidentiality Policy
call may be followed by a write system call, and additionally a data dependepce P :=Vs,t: AG(read(s, D (B,)) A EF(write(t, D (B,,)) A
between the contents of the buffer written and the contents of the buffer read exists, D (BN D (Bu) % @
e) - - h (Br)N DT (By) #0))
the classification level of the target file descriptor is equal or higher than the 3 close(fdy) s S
classification level of the source file descriptor. This can be expressed with CTPL logic. =
P = Vs,t: AG(n = read(s, by) A EF(write(t,byw) A 4 (read0.D°E)
dc € [by, by + n),d € [byw,bw + 1] : c =4 d))
5 (oritet, 0 8)
= CL({t) 2 CL(s) e D) Model Checker
o pe . 6 | fd2 = open(”./copy”)
Verification - @
To automate this verification process, we intend to use a model checker. Using a formal This binary may:
encoding of the abstract behavior model M*, and the security policy as a property in 7 (write(fdo, D= (By)) . : .
h . PR ; - copy information from . /fileto ./copy
temporal logic, security verification can be rephrased as a model checking problem. . .) :
M Optimized Model | -leak information froma ./file to stdout
S |_ P 8 | close(fd2)
ToBIAS PFEFFER

Technische Universitat Berlin
Software and Embedded Systems Engineering
tobias.pfeffer@tu-berlin.de

/A
1\

